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1. Introduction. NS equation and loop calculus

In response to popular demand, I will describe and explain, in the language of

QFT, the Navier-Stokes equation and loop calculus step-by-step, leaving nothing

implied. I will also provide justifications for the limits involved using the loop’s

polygonal approximation, where the velocity circulation approximation errors are

under control.

1.1. NS equation in v–ω form

This is the form of the Navier-Stokes equation we use:

∂tv⃗ = −ν∇× ω⃗ − v⃗ × ω⃗ − ∇⃗
(
p+

v⃗2

2

)
; (1)

∇ · v⃗ = 0; (2)

Here, ν stands for viscosity, p(r⃗, t) for pressure, and ω⃗ = ∇⃗ × v⃗ for vorticity. The

constant water density is set to one.

1.2. pressure breaking the locality

Note that the diffusion term −ν∇ × ω⃗ is the same as the equation of motion for

QED3; however, the advection term −v⃗×ω⃗ breaks the QED analogy and also breaks

locality.

The nonlocal interaction originates from the pressure p, which does not have its

own dynamics here, but rather acts as a Lagrange multiplier to enforce incompress-

ibility (the conservation law ∇⃗ · v⃗(r⃗, t) = 0 for all t).

By applying ∇⃗· to the NS equation and collecting terms, we find:

∇⃗2p = −∇⃗ · (v⃗ · ∇⃗v⃗); (3)

p =
−1
∇⃗2
∇⃗ · (v⃗ · ∇⃗v⃗); (4)

This relation is instantaneous in time (neglecting compressibility, which would oth-

erwise lead to sound waves — e.g., pressure propagation in seawater with a speed

of approximately 1500 meters per second).
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The pressure can be completely eliminated from the NS equation as follows:

∂tv⃗ = −ν∇× ω⃗ − (v⃗ × ω⃗)⊥ ; (5)

V⃗⊥ ≡ V⃗ −
1

∇⃗2
∇⃗ · V⃗ (6)

The Laplacian can have zero modes in a finite domain or in spaces with nontrivial

topology, but not in the case of infinite space with periodic boundary conditions or

simply a constant velocity at infinity.

Thus, the inversion of the Laplacian is unique. It can be written as a Biot–Savart

law for the velocity field:

v⃗(r⃗) =
−1
∇⃗2
∇⃗ × ω⃗(r⃗) =

∫
d3r′

ω⃗(r⃗′)× (r⃗′ − r⃗)
4π|r⃗ − r⃗′|3

(7)

1.3. The energy and its dissipation

The energy of the fluid is given by:

E =

∫
V

d3r
v⃗2

2
(8)

This energy is not conserved; it is dissipated due to viscosity, arising from friction

forces in the fluid. The energy dissipation in an infinite system with periodic or

zero-velocity boundary conditions is:

−∂tE = −
∫
V

d3rv⃗ · ∂tv⃗ = ν

∫
V

d3rω⃗2 (9)

This last formula follows from the Navier-Stokes equations and integration by parts

using Gauss’ theorem. The dropped terms are the divergence of a current:

J⃗(r⃗) = v⃗(r⃗)

(
p(r⃗) +

v⃗(r⃗)2

2

)
+ νω⃗(r⃗)× v⃗(r⃗) (10)

The volume integral of the divergence of this current reduces to its flux through the

surface of the infinite box V :∫
V

d3r∇⃗ · J⃗(r⃗) =
∫
r⃗∈∂V

dS⃗ · J⃗(r⃗) (11)

This is the energy flux through the boundary, which vanishes under our boundary

conditions. If it were present, the energy dissipation would match the net energy

flux, so that energy would be conserved (steady turbulence).

We are, however, considering decaying turbulence where the energy flux is ab-

sent, and energy is eventually fully dissipated.

2. The loop and the circulation

The loop is a periodic function C⃗(θ) = C⃗(θ + 2π) mapping the unit circle to R3

(we use 3D for simplicity, though loop calculus exists in any dimension and also for

nonabelian fields).
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2.1. The velocity circulation

The main dynamical object we study is the circulation and the corresponding

abelian loop functional:

ΓC [v] =

∮
C

v⃗(r⃗, t) · dr⃗ =
∮
v⃗(C⃗(θ), t) · C⃗ ′(θ)dθ; (12)

Ψ[C] =

〈
exp

(
ı
ΓC [v]

ν

)〉
NS

(13)

The equation for circulation is:

∂tΓC [v] =

∮
dC⃗(θ) · ∂tv⃗ =

∮
dC⃗(θ)

(
−ν∇⃗ × ω⃗ − v⃗ × ω⃗

)
(14)

The term with the gradient of the so-called enthalpy H = p + v⃗2

2 drops from the

equation for circulation. The remaining two terms describe diffusion and advection,

respectively.

2.2. Initial data. Thermal fluctuations around a smooth initial

velocity field

The averaging in the loop functional goes over the initial distribution of the velocity

field at t = 0, which could be, for example, thermal fluctuations around some smooth

flow v⃗0(r⃗):

W0[v] = exp

(
−
∫
d3r (v⃗(r⃗)− v⃗0(r⃗))2

2T

)
; (15)

Ψ0[C] = exp

 ıΓC [v0]

ν
−
T
∮
dC⃗(θ) · dC⃗(θ′)δϵ

(
C⃗(θ)− C⃗(θ′)

)
2ν2

 ; (16)

Here δϵ(r⃗) is some regularization of the delta function at molecular distances ϵ.

The last double integral, in the limit ϵ → 0, reduces to the length of the loop

times a factor ∼ 1/ϵ2. This is analogous to a bare mass of a relativistic scalar

particle in three dimensions. This can be elaborated further, but we will only need

the large-time asymptotic of the solution to the loop equation, which is a fixed

point, independent of the initial data.

2.3. Turbulence as a WKB limit of the loop dynamics

The viscosity appears in the denominator of the exponential, like Planck’s constant

in Feynman’s path integral representation of quantum mechanics. This analogy is

not accidental, as we will see later: the NS equation is equivalent to the Schrödinger

equation with Ψ[C] as a wave function in loop space.

For a quantum physicist, it should now be evident that turbulence is a quasiclas-

sical phenomenon. Though nonperturbative, it may still be solvable in appropriate

variables, where the circulation plays the role of classical action.
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Turbulence appears in flows with circulation much larger than viscosity (the

ratio |ΓC [v]|/ν is the so-called Reynolds number). A large Reynolds number corre-

sponds to strong turbulence; this occurs in a variety of natural phenomena, including

plasmas and gases. Even the quark-gluon plasma in the early Universe must have

experienced turbulence, although gluodynamics is also involved in that case.

The UV divergences complicate the loop dynamics, so some regularization is

needed. This regularization must preserve space symmetries: translations and rota-

tions in R3.

The simplest is the polygonal approximation of the loop C, with N → ∞ ver-

tices. An alternative would be truncating the Fourier expansion of the periodic

function C⃗(θ).

We choose the polygonal approximation because it allows an exact solution at

fixed N ; the subsequent local limit N →∞ can also be performed analytically using

methods from number theory.

2.4. Polygonal approximation as regularization

The polygon rN is a piecewise linear approximation of that vector function: it is

a collection of N points r⃗k = C⃗(2πk/N) connected to neighbors by straight lines,

with the periodicity requirement r⃗0 = r⃗N .

The velocity circulation around the polygon, by definition, is:

ΓN =
∑
k

∫ r⃗k+1

r⃗k

dr⃗ · v⃗(r⃗); (17)

Assuming the velocity field is differentiable (which is necessary to use the NS equa-

tion), we can estimate the approximation error as quadratic at a given continuous

curve C⃗(θ):

ΓN = ΓC [v] +O(1/N2) (18)

Our next task will be to use an identity for the polygonal loop functional:

∂t exp

(
ı
ΓN

ν

)
= O(1/N) +

∑
k

∆r⃗k ·
∂tv⃗(r⃗k) + ∂tv⃗(r⃗k−1)

2
exp

(
ı
ΓN

ν

)
=

∑
k

∆r⃗k · (−ν∇k × ω⃗(r⃗k)− v⃗(r⃗k)× ω⃗(r⃗k)) exp
(
ı
ΓN

ν

)
(19)

We have to replace the vector functions ω⃗(r⃗k), v⃗(r⃗k) in this equation with operators

in loop space applied to the exponential exp
(
ıΓN

ν

)
.

After that, the operators can be taken outside the averaging over solutions

of the NS equation, providing us with the loop equation for the loop functional〈
exp

(
ıΓN

ν

)〉
NS

.
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3. Gradients and Area Derivative

3.1. Gradients

Next, let us consider the derivatives of circulation with respect to one of its vertices.

The important observation is that, when all other vertices are fixed, this derivative

∂r⃗k ≡ ∇⃗k only involves two nearest neighbors.

This is equivalent to differentiating the circulation around the triangle △(k −
1, k, k + 1) made of three consecutive vertices by the middle vertex r⃗k.

Using Stokes’ theorem for this triangle with the vector area (r⃗k+1− r⃗k−1)×(r⃗k−
r⃗k−1)/2, and differentiating this area by r⃗k, we have the estimate:

∇⃗kΓN = ω⃗(r⃗k)× (r⃗k+1 − r⃗k−1)/2 +O(1/N2) (20)

By itself, this gradient vanishes as O(1/N) due to the factor r⃗k+1− r⃗k−1 = O(1/N).

3.2. The Area Derivative

To obtain the area derivative, we need one more gradient. There are many ways to

achieve this with accuracy O(1/N), but we choose the most local approximation,

meaning that it involves the closest neighbors.

In the limit N → ∞, these approximations are, of course, equivalent. But the

specific form we choose simplifies the equations, making them analytically solvable

at finite N .

We prefer to use another set of variables:

s⃗k = ∆r⃗k; (21)

η⃗k = ∂s⃗k ; (22)

∇⃗k = −∆η⃗k−1; (23)

The last relation follows from the chain rule:

∇⃗k =
∂s⃗k
∂r⃗k
· η⃗k +

∂s⃗k−1

∂r⃗k
· η⃗k−1 = η⃗k−1 − η⃗k = −∆η⃗k−1 (24)

The vorticity can be represented as:

ω⃗(r⃗k) = η⃗k− × ∇⃗kΓN +O(1/N); (25)

η⃗k− ≡
η⃗k + η⃗k−1

2
; (26)

The contour C becomes an open line when we move all s⃗k independently, without

enforcing the constraint
∑
s⃗k = 0. However, the contribution to the time derivative

of circulation from the extra gap between the endpoints is:

∆∂tΓ ∝ H(r⃗N )−H(r⃗0)

where H(r⃗) = p(r⃗) + v⃗2(r⃗)/2 is the enthalpy, which is assumed to be differentiable.

Thus, this error term vanishes as we reinstate the closure condition
∑
s⃗k = r⃗N−r⃗0 =

0.
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This discrete formula (with error estimates) is a regularization of the continuum

formula:

ω⃗(C⃗(θ)) =
1

2

(
δ

δC⃗ ′(θ − 0)
+

δ

δC⃗ ′(θ + 0)

)
×
∫ θ+0

θ−0

dθ′
δ

δC⃗(θ′)
ΓC (27)

3.3. Diffusion Term in the NS Equation

Now we are in a position to translate the diffusion term ν∇⃗× ω⃗ in the NS equation

into loop space. Step by step, we have:

ν
(
∇⃗k × ω⃗(r⃗k)

)
exp

(
ı
ΓN

ν

)
→ −ı∇⃗k × η⃗k− × ∇⃗k exp

(
ı
ΓN

ν

)
(28)

This relation is based on the observation that the gradient of ΓN vanishes at N →
∞. Therefore, all gradients apply only to the vorticity factor, which depends on r⃗k
directly, not through the circulation.

The gradients applied to ω⃗(r⃗k) exp
(
ıΓN

ν

)
thus only act on ω⃗ in the local limit.

This allows us to extend the action of gradients onto the exponential, after which

the diffusion term becomes an operator and can be taken out of the averaging in

the loop equation: 〈∑
k

∆r⃗k · (−ν∇k × ω⃗(r⃗k)) exp
(
ı
ΓN

ν

)〉
→

∑
k

∆r⃗k ·
(
−ı∇⃗k × η⃗k− × ∇⃗k

)
Ψ[C] (29)

4. The velocity field and momentum loop equation

4.1. Velocity field

Finally, the velocity field at the vertex v⃗(r⃗k) can be related to the vorticity through

the Biot–Savart law (5):

v⃗(r⃗k) exp

(
ıΓN

ν

)
= − 1

∇⃗2
k

∇⃗k × ω⃗(r⃗k) exp
(
ıΓN

ν

)
; (30)

Let us verify this relation using the Biot–Savart integral formula for the inverse

Laplace operator:

v⃗(r⃗k) exp

(
ıΓN

ν

)
=

1

4π

∫
d3r

r⃗ × ω⃗(r⃗k + r⃗)

|r⃗|3
exp

(
ıΓN (r⃗)

ν

)
+O(1/N); (31)

ΓN (r⃗) = ΓN |r⃗k⇒r⃗k+r⃗ (32)

At first glance, the loop in the new circulation ΓN (r⃗) involves two long ”wires”:

(r⃗k−1, r⃗k + r⃗) and (r⃗k + r⃗, r⃗k+1).

However, in the local limit, when the distance |r⃗k+1 − r⃗k−1| = O(1/N), these

two wires have zero area inside the arising thin triangle, so they effectively cancel
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by the Stokes theorem, assuming the Biot–Savart integral converges:

ΓN (r⃗)→ ΓN (0) = ΓN (33)

This produces the desired result in the exponential of the Biot-Savart formula. There

is also an issue of the shifted vorticity ω(r⃗k + r⃗) in the BS integral. The operators

η⃗k− × ∇⃗k acting on exp (ıΓ(r⃗k ⇒ r⃗k + r⃗)) produce for finite r a more complex ex-

pression than just ω⃗(r⃗k + r⃗). In Appendix A, we investigate this expression and

prove its exact equivalence to the original Biot-Savart integral, up to a constant

(loop-independent) factor. This factor Λ ∝ log V diverges when the total volume V

of the system goes to infinity, but it does not affect the decaying turbulence solution

(Euler ensemble) as the whole v̂× ω̂ term in the momentum loop equation vanished

on this solution.

The convergence of the Biot-Savart integral follows from our boundary condi-

tions, assuming no vorticity at infinity or even the stronger requirement of finite

vorticity support.

The phase factor exp (ıΓN (r⃗)/ν) does not influence the absolute convergence, so

it can be set to exp
(
ıΓ
ν

)
for that purpose and taken out of the integral, returning

us to the convergence of the ordinary Biot-Savart integral.

4.2. The momentum loop equation

Therefore, with O(1/N) accuracy, we can replace the right-hand side of the loop

equation by its discrete version with operators involving ∇⃗k:

∂t

〈
exp

(
ıγΓ

ν

)〉
=
ıγ

ν

∑
k

∆r⃗k · L̂k

〈
exp

(
ıγΓ

ν

)〉
+O(1/N); (34a)

L̂k = −ν∇⃗k × ω̂k + ω̂k × v̂k; (34b)

v̂k = − 1

∇⃗2
k

∇⃗k × ω̂k; (34c)

ω̂k =
ıγ

ν
η⃗k− × ∇⃗k; (34d)

The loop operator L̂ in (34) dramatically simplifies in the functional Fourier

space, which we call momentum loop space. In our discrete approximation, the

momentum loop will also be a polygon with N sides.

The origin of this simplification is the lack of direct dependence of the loop

operator L̂(θ) on the loop C itself. Only derivatives ∇⃗k, η⃗k enter this operator.

From the point of view of quantum mechanics in loop space, our Hamiltonian

depends only on canonical momenta but not on canonical coordinates. This property

is exact as long as we do not add external forces.

This remarkable symmetry (translational invariance in loop space) allows us to
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look for the “superposition of plane waves” Ansatz:

Ψ(C|t) = ⟨ψp(t)⟩init ; (35a)

ψp(t) = exp

(
ı

ν

∑
k

∆r⃗k · P⃗k(t)

)
(35b)

Here, the averaging ⟨. . . ⟩init goes over all trajectories P⃗k(t) starting from random

initial data P⃗k(0), distributed with the appropriate probability to reproduce the

initial value Ψ(C|0). We will discuss this initial distribution in the next sections.

The operators ∇⃗k, η⃗k become ordinary vectors when applied to ψp in (35):

∇⃗kψp = − ı
ν
∆P⃗k−1ψp; (36a)

η⃗k−ψp =
ı

ν
P⃗k−ψp; (36b)

P⃗k− ≡
P⃗k + P⃗k−1

2
; (36c)

ω̂k ∝
ı

ν
P⃗k− ×∆P⃗k (36d)

The velocity circulation can be rewritten up to O(1/N) corrections as a sym-

metric sum:∑
k

∆r⃗k · P⃗k(t) +O(1/N) =
∑
k

∆r⃗k +∆r⃗k+1

2
· P⃗k(t) =

∑
k

∆r⃗k · P⃗k−(t) (37)

We did not assume here anything about the continuity of P⃗k; we only assumed that

|∆r⃗k+1 −∆r⃗k| ≪ |∆r⃗k|, which is true for a smooth loop.

5. The momentum loop equation (MLE) and its continuum limit

The discrete loop equation (34) with our Ansatz (35), after some algebraic trans-

formations using the identities (36) and (37), reduces to the following momentum

loop equation (MLE):

ν∂tP⃗ = −(∆P⃗ )2P⃗ +∆P⃗

(
P⃗ ·∆P⃗ + ı

(
(P⃗ ·∆P⃗ )2

∆P⃗ 2
− P⃗ 2

))
; (38a)

∆P⃗ ≡ P⃗k − P⃗k−1; (38b)

P⃗ ≡ P⃗k− (38c)

In the local limitN →∞, the momentum loop develops a discontinuity ∆P⃗ (θ) at

every point 0 < θ ≤ 2π, making it a fractal curve in complex space Cd. Such a curve

can only be defined using a limiting process, such as a polygonal approximation

or a Fourier expansion of a periodic function of θ with slowly decaying Fourier

coefficients.

You can regard this curve as a periodic random process hopping around the

circle — more about this process will follow in the context of decaying turbulence.
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The details can be found in Refs.1–3 We will omit the arguments t, k in these

loop equations going forward, as the equations have no explicit dependence on either

parameter.

6. Universality and Scaling of MLE

Various symmetry properties affect the solution space of the momentum loop equa-

tion (MLE), especially its fixed trajectories.

First of all, this equation is parametrically invariant:

P⃗ (θ, t)⇒ P⃗ (f(θ), t), f ′(θ) > 0; (39)

Naturally, any initial condition P⃗ (θ, 0) = P⃗0(θ) will break this invariance. Each

such initial condition will generate a family of solutions corresponding to initial

data P⃗0(f(θ)).

The absence of explicit time dependence on the right-hand side leads to time

translation invariance:

P⃗ (θ, t)⇒ P⃗ (θ, t+ a) (40)

Less trivial but also significant is the time-rescaling symmetry:

P⃗ (θ, t)⇒
√
λ P⃗ (θ, λt) (41)

This symmetry follows because the right-hand side of (38) is a homogeneous func-

tional of degree three in P⃗ , with no explicit time dependence.

This scaling transformation is quite different from that of the original Navier-

Stokes equation, which involves rescaling the viscosity parameter:

v⃗(r⃗, t)⇒ v⃗(αr⃗, λt)

αλ
; (42)

ν ⇒ ν
α2

λ
(43)

In our case, there is a genuine scale invariance without any parameter change — in

other words, there are no remaining dimensional parameters in MLE.

Using this invariance, one can define the following transformation of the mo-

mentum loop and its variables:

P⃗ =

√
ν

2(t+ t0)
F⃗ (44)

The new vector function F⃗ satisfies the following dimensionless equation:

2∂τ F⃗ =
(
1− (∆F⃗ )2

)
F⃗ +∆F⃗

(
F⃗ ·∆F⃗ + ı

(
(F⃗ ·∆F⃗ )2

∆F⃗ 2
− F⃗ 2

))
; (45)

τ = log

(
t+ t0
t0

)
(46)
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The viscosity has disappeared from this equation; it now enters only the

initial data:

F⃗ (θ, 0) =

√
2t0
ν
P⃗0(θ) (47)

This universality property is extremely important.

Note that the loop functional is now represented as:

Ψ(C, t) =

〈
exp

 ı
∮
dC⃗(θ) · F⃗

(
θ, log

t+ t0
t0

)
√

2ν(t+ t0)


〉

(48)

with the square root of viscosity in the denominator as a coupling constant in a

nonlinear QFT. The averaging ⟨. . . ⟩ goes over the manifold of solutions F⃗ (θ, τ) of

the ODE (45).

This formula immediately suggests that turbulence is a quasiclassical phe-

nomenon in our quantum mechanical system, which can be studied using the well-

known WKB method.

In the conventional approach to fluid mechanics, based on the Navier-Stokes

equation, the Reynolds number — which distinguishes between laminar and turbu-

lent flow — appears in the equation and controls the relative magnitude of non-

linearity. One must study various regimes in that equation, including the inviscid

limit (presumably related to turbulence but different from the Euler equation due

to the dissipation anomaly).

In our dual theory, representing the same Navier-Stokes dynamics as a quantum

system, the dynamical equation (45) is universal; it does not depend on the Reynolds

number.

This number enters through the initial data and the relation between our solution

F⃗ and the loop functional (i.e., the PDF for the circulation as a functional of the

loop shape).

The evolution of the loop functional Ψ inside the unit circle in the complex plane

proceeds along universal trajectories determined by (45). The Reynolds number

describes the initial position of Ψ inside the circle. The distance |Ψ − 1| from the

fixed point Ψ∗ = 1 is the true measure of turbulence. One could expect a laminar

flow solution in a small neighborhood of this fixed point (corresponding to potential

flow).

7. Decaying turbulence

The solutions originating deep inside the unit circle, far from Ψ = 1, can become

turbulent and eventually decay to Ψ → 1 due to energy dissipation by vorticity

structures. This decay for P⃗ (θ, t) corresponds to the fixed point equation for F⃗ :(
(∆F⃗ )2 − 1

)
F⃗ = ∆F⃗

(
γ2F⃗ ·∆F⃗ + ıγ

(
(F⃗ ·∆F⃗ )2

∆F⃗ 2
− F⃗ 2

))
(49)
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This fixed point F⃗ (θ) is not itself a solution of the Cauchy problem for the

loop functional, although we expect some solutions to asymptotically approach it

as t→∞.

This fixed point represents the solution of the loop equation with the bound-

ary condition Ψ(θ,+∞) = 1, which describes the flow eventually stopping due to

dissipation of kinetic energy:

E =

∫
d3r

v⃗2

2
, ∂tE = −ν

∫
d3r ω⃗2 < 0.

7.1. Fixed point solution

The saddle point equation (49) was solved and investigated in previous works.1,2

The solution F⃗ (θ) is a fractal curve defined as the N → ∞ limit of a polygon

F⃗0, . . . , F⃗N = F⃗0 with vertices:

F⃗k = Ω ·

{
cos(αk), sin(αk), ı cos

(
β
2

)}
2 sin

(
β
2

) ; (50)

θk =
k

N
, β =

2πp

q
, N →∞; (51)

αk = αk−1 + σkβ, σk = ±1, β
∑

σk = 2πpr; (52)

Ω ∈ SO(3) (53)

The parameters Ω, p, q, r, σ0, . . . , σN = σ0 are random, making the solution F⃗ (θ)

a fixed manifold rather than a point. We referred to this manifold as the “big Euler

ensemble” in.1

This is a fixed point of (45) under the discrete form of the derivative:

∆F⃗ = F⃗k − F⃗k−1; (54)

F⃗ =
F⃗k + F⃗k−1

2
(55)

The right-hand side of (45) vanishes — both the coefficient in front of ∆F⃗ and

the one in front of F⃗ are zero. Otherwise, we would have F⃗ ∥ ∆F⃗ , leading to

vanishing vorticity.1

This condition leads to two scalar equations:

(∆F⃗ )2 = 1; (56a)

F⃗ 2 − 1

4
=
(
F⃗ ·∆F⃗ − ı

2

)2
(56b)

The discrete Ising variables σk = ±1 emerge from the structure of the solution.

The requirement that β = 2πp
q be rational comes from the periodicity condition —

we’ll prove this explicitly later.
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In the polygonal limit, the circulation integral becomes a Lebesgue-type sum:∮
dC⃗(θ) · F⃗ (θ)→

∑
k

∆C⃗k · F⃗k (57)

A remarkable property of this solution is that even though F⃗k has an imaginary

part, the resulting circulation (57) is real! The imaginary part of F⃗k is constant and

therefore cancels due to loop closure:∑
k

∆C⃗k = 0.

Furthermore, −F⃗k and F⃗k are symmetrically distributed due to the integration

over the rotation matrix Ω. This symmetry — a π rotation in the xy-plane combined

with complex conjugation — leaves the loop functional invariant.

As a result, the probability distribution function (PDF) of the circulation Γ =∑
k ∆C⃗k · P⃗k is an even function. However, multiple-vorticity correlators are not

suppressed by this symmetry. The area derivative ω̂k is quadratic in P⃗ and hence

not sign-reversing.

Thus, odd correlators such as ωα(1)ωβ(2)ωγ(3) may still be nonzero. Corre-

sponding triple velocity correlators (e.g., v⃗α(1)v⃗β(2)v⃗γ(3)) follow from Fourier anal-

ysis, where v⃗k = ı⃗k × ω⃗k/k⃗
2, up to purely potential terms linear in r⃗.

These potential terms do not contribute to energy flux in wavevector space.

Contrary to popular belief — as discussed in2 — they result in gradients of delta

functions, ∂k⃗δ
3(k⃗), not a constant flux.

Such terms depend on boundary conditions and do not represent spontaneous

stochasticity caused by internal vorticity structures.

7.2. The proof of the Euler ensemble as a fixed point of MLE

Let us present here the proof of this solution, verified by Mathematica® (see4).

Theorem 1. The Euler ensemble solves the discrete MLE.

Proof. We start from the general Ansatz with real vectors A⃗, f⃗k, corresponding to

the real circulation in (57):

F⃗k = ıA⃗+
f⃗k−1 + f⃗k

2
; (58)

∆F⃗k = f⃗k − f⃗k−1; (59)

(f⃗k − f⃗k−1)
2 = 1 (60)

Analyzing the imaginary and real parts of the second equation in (56), we observe

that the imaginary part vanishes provided:

A⃗ · f⃗k = 0 ∀k; (61)

f⃗2k = f⃗2k−1 ∀k (62)
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We conclude that f⃗k lies on a circle of radius R centered at the origin of the

plane orthogonal to A⃗.

In the coordinate frame where A⃗ = {0, 0, A}, we can write:

f⃗k = R {cos(αk), sin(αk), 0} (63)

The SO(3) matrix that rotates these vectors into this coordinate frame can be

absorbed into the overall rotation matrix Ω in our solution (A.10).

The radius R and the magnitude A = |A⃗| are determined by the real part of our

equations:

4A2 = 2R2 (1 + cos(αk − αk−1)) ; (64a)

1 = 2R2 (1− cos(αk − αk−1)) (64b)

Solving these equations gives:

αk = αk−1 + βσk, σ2
k = 1; (65)

R =
1

2 sin(β/2)
; A =

1

2 tan(β/2)
(66)

The periodicity of the sequence f⃗k requires the angular step to be a rational

fraction of 2π, which brings us directly to the Euler ensemble (A.10).

7.3. Euler ensemble as a random walk on a regular star polygon

Geometrically, the vertices f⃗k lie on a regular star polygon with q sides of unit length,

with vertices located at R exp (() ıkβ), k = 1, . . . , q. These polygons were classified

by Thomas Bradwardine (Archbishop of Canterbury) and later by Johannes Kepler.

They are denoted {q/p} (the Schläfli symbol).

We show several examples in Fig. 1. A general star polygon is characterized by

co-prime integers p < q < N , with N − q ≡ 0 mod 2.

Euler totient functions count these polygons. The number N > q counts how

many times the sequence f⃗k covers the same polygon — that is, each vertex of the

star may be visited multiple times.

The Ising variables σk describe a random walk around the polygon, with the

constraint that it returns to the starting point after N steps. The walk proceeds

step-by-step via k ↔ k + 1, and the sign of σk determines the step direction.

The periodicity condition requires that β be a rational multiple of 2π, thus quan-

tizing the angle and the radius. This introduces number theory into the statistical

structure.

Each polygon may be covered several times, and the total winding number w is

given by:

w =
p

q

N∑
1

σk = pr

Surprisingly, this fundamental random walk problem on a 500-year-old geometric

manifold has only now been solved.
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Figure 1. Regular star polygons for Euler ensembles with various p, q. The σk variable indicates

the direction of the random step along link k ↔ k + 1. The walk may wrap around the polygon
multiple times, as long as it returns to its start.

7.4. Euler ensemble as string theory with discrete target space

This random walk can also be interpreted as a closed fermionic string with discrete

target space made of regular star polygons lying in randomly rotated planes.

Integrating over fermionic degrees of freedom in the quantum trace of the evo-

lution operator is equivalent to summing over occupation numbers nk = 0, 1, which

correspond to σk = 2nk − 1, giving the random walk directions.

The target space is the set of regular star polygons {q/p}, with vertex coordinates

f⃗k.

Integration over the target space becomes a discrete sum over Euler ensemble

states: - Rational angles p
q - Ising configurations νk = 0, 1 - Winding number w =

p
q

∑
(2νk − 1)

Placing the polygons (for fixed N) on a torus in 3D, ordered by angle β, gives

the worldsheet of the discrete string — shown in Fig. 2. The red/green coloring of

the edges indicates the random directions of the walk (or equivalently, fermionic

occupation).

The large disk (which becomes infinite as N →∞) corresponds to the endpoints

β = 2π
N , 2π(N−1)

N .

The solution of the Euler ensemble1 is based on new number-theoretic identities

involving cotangent sums of π-fractions. These identities relate the sums to Jordan

multi-totient functions weighted with Bernoulli coefficients.

The key nontrivial formula is (48), which connects this ensemble to the observ-

able loop functional of decaying turbulence.

In string theory language, where the momentum loop is the target space, and

fermionic occupation is encoded by σk, this formula is the dual amplitude of a string

theory with discrete target space. The quantity

∆C⃗(θ)√
2ν(t+ t0)
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Figure 2. The worldsheet of the discrete string built from regular star polygons with unit side.

Red/green edge colors indicate random walk direction (i.e., fermionic occupation).

Figure 3. Predictions of this theory compared with classical grid turbulence decay data (1966).

The data significantly deviates from the Kolmogorov-Saffman prediction (1.20) but aligns precisely
with our predicted index 5/4 = 1.25.

plays the role of external momentum distributed along the string’s position F⃗ (θ).



16

Figure 4. Raw data from 2025 DNS (A. Rodhiya and K.R. Sreenivasan, 40963) and 2024 DNS

(J.J. Panicacheril, D. Donzis, K.R. Sreenivasan, 10243). The effective scaling index of the second
velocity moment is plotted vs. log r/

√
t+ t0 (lower-left). Both datasets match the theoretical curve

(green) within error bars. Kolmogorov prediction (2/3) shown as dashed black line — clearly
invalid. Upper left: L(t) vs. prediction L =

√
t+ t0. Right panels: decaying energy compared to

E ∝ L−5/2. Our curve (green) fits DNS data perfectly, including subleading corrections.

7.5. The turbulence/string duality and final insights

This turbulence/string duality reveals the hidden beauty of primes be-

neath the chaotic surface of turbulence.

The corresponding universal energy spectrum for decaying turbulence was com-

puted in closed form in,2 in the quasiclassical limit ν = ν̃/N2 → 0. It closely matches

both experimental and numerical DNS data.

A detailed comparison with real and numerical experiments in decaying turbu-

lence was published in.2,5

Let us recall two figures from that work: Fig.3 and Fig.4.

This theory is the first to derive a complete, exact, and universal solution to

3D decaying turbulence — grounded in duality, number theory, and quantum field

theory in loop space.
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Best regards,

Sasha
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Appendix A. The estimate of the velocity term with line integral

over polygon

Here is a revised estimate of the velocity term in the loop equation. We find a non-

universal normalization factor, which fortunately drops from the Euler ensemble

solution.

We use line integrals over polygons instead of discrete sums

Γ =
∑
k

∫ rk+1

rk

dr⃗ · v⃗(r) (A.1)

The computations are based on the following two lemmas:

Lemma Appendix A.1. Circulation over the polygon P : r1, . . . rN equals cir-

culation of the polygon P ′ with skipped vertex rk plus area integral over triangle

△(rk−1, rk, rk+1) of the normal vorticity.

Proof. Follows from the Stokes theorem after adding a backtracking line integral

between rk−1, rk+1

Lemma Appendix A.2. The area integral Γ△ over triangle △(rk−1, rk + ρ, rk+1)

of the normal vorticity has the following asymptotic expression in the limit when

a = rk+1 − rk−1 = O(1/N)→ 0:

Γ△ → ρ⃗× a⃗ ·
∫ 1

0

dλ(1− λ)ω⃗(rk + λρ⃗) +O(1/N2)

, where we only assumed a⃗ ∼ O(1/N).

Proof. Let us use the frame where ρ⃗ = {ρ, 0, 0}, and az = 0, so that triangle is in

x, y plane. Up to the O(1/N2) terms, we could replace the small side of the triangle

by its y component, after which we have an equilateral triangle O(1/N2). Let us

consider the line from the far corner to the middle of this side r = C̄+λρ. The area

integral can be written as∫ ρ

0

dx

∫ α(ρ−x)

−α(ρ−x)

dyωn(C̄ + (x, y)) (A.2)

http://arxiv.org/abs/2304.13719
http://arxiv.org/abs/2304.13719
https://arxiv.org/abs/2411.01389
https://arxiv.org/abs/2411.01389
https://sashamigdal.github.io/TurbulenceDuality/index.html
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with α = ay/ρ. Expanding vorticity in y we see that the linear terms cancel by

symmetry in the y integral, and higher terms do not contribute to the required

O(1/N) terms. Integrating by y and changing x = λρ, we find the quoted result,

after transforming ti a general frame.

Corollary Appendix A.1. The derivative of the circulation by a⃗ can be written

as

−∂a⃗Γ△ → ρ⃗×
∫ 1

0

dλ(1− λ)ω⃗(rk + λρ⃗) +O(1/N),

Proof. Straightforward.

The BS integral can now be written up to O(1/N) as

−ı
∫

d3ρ

|ρ|3
ρ× (∂a⃗ × ∂ρ⃗) exp (ıΓ)→

exp (ıΓ)

∫
d3ρ

|ρ|3
ρ⃗×

(
∂ρ⃗ ×

(
ρ⃗×

∫ 1

0

dλ(1− λ)ω⃗(rk + λρ⃗)

))
(A.3)

Now, assuming the integration over ρ converges we can rescale ρ ⇒ ρ/λ and

change integration order:∫
d3ρ

|ρ|3
ρ⃗×

(
∂ρ⃗ ×

(
ρ⃗×

∫ 1

0

dλ(1− λ)ω⃗(rk + λρ⃗)

))
=∫ 1

0

dλ(1− λ)/λ
∫

d3ρ

|ρ|3
ρ⃗× (∂ρ⃗ × (ρ⃗× ω⃗(rk + ρ⃗))) (A.4)

In the resulting ρ integral we can replace ∂ρ⃗ as −
←−
∂ρ⃗ acting on left factors ρ⃗/|ρ⃗|3.

Performing the gradients and tensor sums we arrive at the same BS integral, up to

a normalization factor∫ 1

0

dλ(1− λ)/λ
∫

d3ρ

|ρ|3
ρ⃗×

(←−
∂ρ⃗ × (ρ⃗× ω⃗(rk + ρ⃗))

)
=

Λ

∫
d3ρ

|ρ|3
ρ⃗× ω⃗(rk + ρ⃗); (A.5)

Λ =

∫ 1

ϵ

dλ(1− λ)/λ→ log(1/ϵ) (A.6)

This logarithmic divergence came from the large distances ρ in the initial in-

tegral. At small λ, the BS kernel linearly grows with ρ, but ω does not provide

convergence if λ ∼ 1/ρ→ 0.

In short, this factor is influenced by the finite size effects in the large volume

limit. Fortunately, the coefficient in front of the logarithm is universal; the finite

size effects affect only the value of ϵ.
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We conclude that the advection term in the NS equation will be correctly re-

produced provided the corresponding term in the discrete loop equation is divided

by Λ. This leads to the renormalized MLE

ν∂tP⃗ = −γ2(∆P⃗ )2P⃗ +∆P⃗

(
γ2P⃗ ·∆P⃗ +

ıγ

Λ

(
(P⃗ ·∆P⃗ )2

∆P⃗ 2
− P⃗ 2

))
; (A.7)

∆P⃗ ≡ P⃗k − P⃗k−1; (A.8)

P⃗ ≡ P⃗k− (A.9)

However, the renormalization factor Λ drops from the Euler ensemble solution, as

does the factor γ. I verified this by direct computation with the extra factor present.

P⃗ =

√
ν

2(t+ t0)

F⃗

γ
; (A.10)

F⃗k = Ω ·

{
cos(αk), sin(αk), ı cos

(
β
2

)}
2 sin

(
β
2

) ; (A.11)

θk =
k

N
; β =

2πp

q
; N →∞; (A.12)

αk = αk−1 + σkβ; σk = ±1, β
∑

σk = 2πpr; (A.13)

Ω ∈ SO(3) (A.14)


	Introduction. NS equation and loop calculus
	NS equation in v– form
	pressure breaking the locality
	The energy and its dissipation

	The loop and the circulation
	The velocity circulation
	Initial data. Thermal fluctuations around a smooth initial velocity field
	Turbulence as a WKB limit of the loop dynamics
	Polygonal approximation as regularization

	Gradients and Area Derivative
	Gradients
	The Area Derivative
	Diffusion Term in the NS Equation

	The velocity field and momentum loop equation
	Velocity field
	The momentum loop equation

	The momentum loop equation (MLE) and its continuum limit
	Universality and Scaling of MLE
	Decaying turbulence
	Fixed point solution
	The proof of the Euler ensemble as a fixed point of MLE
	Euler ensemble as a random walk on a regular star polygon
	Euler ensemble as string theory with discrete target space
	The turbulence/string duality and final insights

	The estimate of the velocity term with line integral over polygon

